We appreciate your visit to Calculate the mole fractions χacetone and χcyclohexane in the vapor above the solution Given tex p circ text acetone 229 5 tex torr and tex. This page offers clear insights and highlights the essential aspects of the topic. Our goal is to provide a helpful and engaging learning experience. Explore the content and find the answers you need!
Answer :
First calculate the mole fraction of each substance:
Acetone: 2.88 mol ÷ (2.88 mol + 1.45 mol) = 0.665
Cyclohexane: 1.45 ÷ (2.88 mol + 1.45 mol) = 0.335
Raoult's Law: P(total) = P(acetone) · χ(acetone) + P(cyclohexane) · χ(cyclohexane).
P(total) = 229.5 torr · 0.665 + 97.6 torr · 0.335
P(total) = 185.3 torr
χ for acetone: 229.5 torr · 0.665 ÷ 185.3 torr = 0.823
χ for cyclohexane: 97.6 torr · 0.335 ÷ 185.3 torr = 0.177
Acetone: 2.88 mol ÷ (2.88 mol + 1.45 mol) = 0.665
Cyclohexane: 1.45 ÷ (2.88 mol + 1.45 mol) = 0.335
Raoult's Law: P(total) = P(acetone) · χ(acetone) + P(cyclohexane) · χ(cyclohexane).
P(total) = 229.5 torr · 0.665 + 97.6 torr · 0.335
P(total) = 185.3 torr
χ for acetone: 229.5 torr · 0.665 ÷ 185.3 torr = 0.823
χ for cyclohexane: 97.6 torr · 0.335 ÷ 185.3 torr = 0.177
Thanks for taking the time to read Calculate the mole fractions χacetone and χcyclohexane in the vapor above the solution Given tex p circ text acetone 229 5 tex torr and tex. We hope the insights shared have been valuable and enhanced your understanding of the topic. Don�t hesitate to browse our website for more informative and engaging content!
- Why do Businesses Exist Why does Starbucks Exist What Service does Starbucks Provide Really what is their product.
- The pattern of numbers below is an arithmetic sequence tex 14 24 34 44 54 ldots tex Which statement describes the recursive function used to..
- Morgan felt the need to streamline Edison Electric What changes did Morgan make.
Rewritten by : Barada
The completed structure of [tex]{\text{C}}{{\text{H}}_{\text{3}}}{\text{SSC}}{{\text{H}}_{\text{3}}}[/tex] is shown in the attached image.
Further explanation:
Lewis structure:
In covalent molecules, different atoms are bonded to each other and this bonding between these atoms is shown with help of diagrams known as Lewis structures, Lone pairs are also indicated by such structures. These are also known as Lewis dot diagrams, Lewis dot structures or electron dot diagrams.
Lewis structure of [tex]{\mathbf{C}}{{\mathbf{H}}_{\mathbf{3}}}{\mathbf{SSC}}{{\mathbf{H}}_{\mathbf{3}}}[/tex] (Refer to the structure in the attached image):
The total number of valence electrons of [tex]{\text{C}}{{\text{H}}_{\text{3}}}{\text{SSC}}{{\text{H}}_{\text{3}}}[/tex] is calculated as follows:
Total valence electrons = [(2) (Valence electrons of C) + (2) (Valence electrons of S) + (6) (Valence electrons of H)]
[tex]\begin{aligned} {\text{Total valence electrons}}\left( {{\text{TVE}}} \right) &= \left[ {\left( {\text{2}} \right)\left( {\text{4}} \right) + \left( {\text{2}} \right)\left( {\text{6}} \right) + \left( 6 \right)\left( 1 \right)} \right] \\ & = 26 \\ \end{aligned}[/tex]
In [tex]{\text{C}}{{\text{H}}_{\text{3}}}{\text{SSC}}{{\text{H}}_{\text{3}}}[/tex], the total number of valence electrons is 26. In this molecule, each carbon forms three single bonds with three discrete hydrogen atoms and one single bond with sulfur atoms. So 16 electrons are used up in formation of six C-H bonds and two C-S bonds. Each sulfur atom forms one bond with other sulfur atom so 2 electrons are used up in formation of one S-S bond. Out of 26 total electrons, 18 electrons are utilized in formation of bonds in [tex]{\text{C}}{{\text{H}}_{\text{3}}}{\text{SSC}}{{\text{H}}_{\text{3}}}[/tex] and eight electrons are left unutilized and act as four lone pairs. Since carbon forms four bonds and each hydrogen atom forms one bond, four lone pairs are present on both sulfur atoms.
Learn more:
- Molecular shape around each of the central atoms in the amino acid glycine: https://brainly.com/question/4341225
- Draw resonating structures of azide ion: https://brainly.com/question/6002848
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Molecular structure and chemical bonding
Keywords: Lewis structure, valence electrons, CH3SSCH3, 26, 18, lone pairs, carbon, sulfur, hydrogen, four lone pairs, 2, 16.