College

We appreciate your visit to 3 A fruit grower raises two crops apples and peaches The grower ships each of these crops to three different outlets In the matrix tex. This page offers clear insights and highlights the essential aspects of the topic. Our goal is to provide a helpful and engaging learning experience. Explore the content and find the answers you need!

**3. A fruit grower raises two crops, apples and peaches. The grower ships each of these crops to three different outlets.**

In the matrix:

\[
[tex] A = \begin{bmatrix} 125 & 100 & 75 \\ 100 & 175 & 125 \end{bmatrix} [/tex]
\]

\[ [tex] a_{ij} [/tex] \] represents the number of units of crop \([tex] i [/tex]\) that the grower ships to outlet \([tex] j [/tex]\).

The matrix:

\[
[tex] B = \begin{bmatrix} \$3.5 & \$6.00 \end{bmatrix} [/tex]
\]

represents the profit per unit. Find the product \([tex] BA [/tex]\) and state what each entry of the matrix represents.

---

**4. A corporation has three factories, each of which manufactures acoustic guitars and electric guitars.**

In the matrix:

\[
[tex] A = \begin{bmatrix} 70 & 50 & 25 \\ 35 & 100 & 70 \end{bmatrix} [/tex]
\]

\[ [tex] a_{ij} [/tex] \] represents the number of guitars of type \([tex] i [/tex]\) produced at factory \([tex] j [/tex]\) in one day. Find the production levels when production increases by \([tex] 20\% [/tex]\).

---

**5. Find the value of \([tex] x [/tex]\) for which the matrix is equal to its own inverse:**

(a) \[
[tex] \begin{bmatrix} 3 & x \\ -2 & -3 \end{bmatrix} [/tex]
\]

(b) \[
[tex] \begin{bmatrix} 2 & x \\ -1 & -2 \end{bmatrix} [/tex]
\]

(c) \[
[tex] \begin{bmatrix} x & 2 \\ -3 & 4 \end{bmatrix} [/tex]
\]

---

**6. If**

\[
[tex] A = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} [/tex]
\]

then:

i. Show that \([tex] A = A^{-1} [/tex]\).

ii. Show that \([tex] A^n = \begin{bmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{bmatrix} [/tex]\).

---

**7. If**

\[
[tex] A = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} [/tex]
\]

and

\[
[tex] B = \begin{bmatrix} \cos(\phi) & \sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{bmatrix} [/tex]
\]

then show that

\[
[tex] AB = \begin{bmatrix} \cos(\theta+\phi) & \sin(\theta+\phi) \\ -\sin(\theta+\phi) & \cos(\theta+\phi) \end{bmatrix} [/tex]
\]

---

**8. Determine the values of \([tex] \alpha [/tex]\) for which the matrix**

\[
[tex] A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & \alpha \end{bmatrix} [/tex]
\]

is invertible and find \([tex] A^{-1} [/tex]\).

---

**9. Show that if \([tex] A [/tex]\) is invertible, then so is \([tex] A^m [/tex]\) for every positive integer \([tex] m [/tex]\); moreover, \([tex] (A^m)^{-1} = (A^{-1})^m [/tex]\).**

---

**10. If \([tex] A [/tex]\) and \([tex] B [/tex]\) are \([tex] n \times n [/tex]\) matrices with \([tex] A [/tex]\) invertible, then show that**

\[
[tex] (A+B)A^{-1}(A-B) = (A-B)A^{-1}(A+B) [/tex]
\]

---

**11. Solve the following systems of linear equations using Gaussian elimination:**

(a)

\[
[tex] \begin{aligned}
& x_1 - x_2 + 2x_3 = 4 \\
& x_1 + x_3 = 6 \\
& 2x_1 - 3x_2 + 5x_3 = 4 \\
& 3x_1 + 2x_2 - x_3 = 1 \\
\end{aligned} [/tex]
\]

(b)

\[
[tex] \begin{aligned}
& x_1 - 2x_2 + 3x_3 = 9 \\
& -x_1 + 3x_2 = -4 \\
& 2x_1 - 5x_2 + 5x_3 = 17 \\
& 2x_1 + x_2 - x_3 + 2x_4 = -6 \\
& 3x_1 + 4x_2 + x_4 = 12 \\
& x_1 + 5x_2 + 2x_3 + 6x_4 = -3 \\
& 5x_1 + 2x_2 - x_3 - x_4 = 1 \\
\end{aligned} [/tex]
\]

---

**12. Use Cramer's rule (if possible) to solve the following linear systems:**

(a)

\[
[tex] \begin{aligned}
& x_1 + 2x_2 = 5 \\
& -x_1 + x_2 = 1 \\
\end{aligned} [/tex]
\]

Answer :

To solve the linear system using Cramer's Rule, follow these steps:

We have the system of equations:

1. [tex]\( x_1 + 2x_2 = 5 \)[/tex]
2. [tex]\(-x_1 + x_2 = 1 \)[/tex]

Step 1: Formulate the coefficient matrix and the determinant.

The coefficient matrix [tex]\( A \)[/tex] is:

[tex]\[
A = \begin{bmatrix}
1 & 2 \\
-1 & 1
\end{bmatrix}
\][/tex]

The determinant of matrix [tex]\( A \)[/tex] (denoted as [tex]\( \det(A) \)[/tex]) is calculated as follows:

[tex]\[
\det(A) = (1)(1) - (-1)(2) = 1 + 2 = 3
\][/tex]

Since the determinant is non-zero ([tex]\( \det(A) = 3 \)[/tex]), Cramer's Rule can be applied, indicating the system has a unique solution.

Step 2: Calculate the determinants for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex].

To find [tex]\( x_1 \)[/tex], replace the first column of the coefficient matrix with the constants from the right side of the equations:

[tex]\[
A_{x_1} = \begin{bmatrix}
5 & 2 \\
1 & 1
\end{bmatrix}
\][/tex]

The determinant [tex]\( \det(A_{x_1}) \)[/tex] is:

[tex]\[
\det(A_{x_1}) = (5)(1) - (1)(2) = 5 - 2 = 3
\][/tex]

To find [tex]\( x_2 \)[/tex], replace the second column of the coefficient matrix with the constants:

[tex]\[
A_{x_2} = \begin{bmatrix}
1 & 5 \\
-1 & 1
\end{bmatrix}
\][/tex]

The determinant [tex]\( \det(A_{x_2}) \)[/tex] is:

[tex]\[
\det(A_{x_2}) = (1)(1) - (-1)(5) = 1 + 5 = 6
\][/tex]

Step 3: Solve for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] using Cramer's Rule.

According to Cramer's Rule:

[tex]\[
x_1 = \frac{\det(A_{x_1})}{\det(A)} = \frac{3}{3} = 1.0
\][/tex]

[tex]\[
x_2 = \frac{\det(A_{x_2})}{\det(A)} = \frac{6}{3} = 2.0
\][/tex]

Thus, the solution to the system of equations is:
[tex]\( x_1 = 1.0 \)[/tex] and [tex]\( x_2 = 2.0 \)[/tex].

Thanks for taking the time to read 3 A fruit grower raises two crops apples and peaches The grower ships each of these crops to three different outlets In the matrix tex. We hope the insights shared have been valuable and enhanced your understanding of the topic. Don�t hesitate to browse our website for more informative and engaging content!

Rewritten by : Barada