We appreciate your visit to Find the orthogonal trajectories of the family of curves y4 kx3 A 25 y3 3x2 C B 2y3 2x2 C C y2 2x2 C D. This page offers clear insights and highlights the essential aspects of the topic. Our goal is to provide a helpful and engaging learning experience. Explore the content and find the answers you need!
Answer :
The orthogonal trajectories are given by options (C), (F), and (G), i.e.,
[tex]\(y^2 + 2x^2 = C\),[/tex]
[tex]\(2y^3 + 25x^3 = C\)[/tex], and
[tex]\(23y^2 + 23x^2 = C\)[/tex].
To find the orthogonal trajectories of the family of curves given by, we need to find the differential equation satisfied by the orthogonal trajectories and then solve it to obtain the desired equations.
Let's start by finding the differential equation for the family of curves [tex]\(y^4 = kx^3\)[/tex]. Differentiating both sides with respect to (x) gives:
[tex]\[4y^3 \frac{dy}{dx} = 3kx^2.\][/tex]
Now, we can find the slope of the tangent line for the family of curves. The slope of the tangent line is given by [tex]\(\frac{dy}{dx}\)[/tex], and the slope of the orthogonal trajectory will be the negative reciprocal of this slope.
So, the slope of the orthogonal trajectory is
[tex]\(-\frac{1}{4y^3} \cdot \frac{dx}{dy}\).[/tex]
To find the differential equation satisfied by the orthogonal trajectories, we equate the negative reciprocal of the slope to the derivative of \(y\) with respect to \(x\):
[tex]\[-\frac{1}{4y^3} \cdot \frac{dx}{dy} = \frac{dy}{dx}.\][/tex]
Simplifying this equation, we get:
[tex]\[-\frac{1}{4y^3} dy = dx.\][/tex]
Now, we integrate both sides with respect to the respective variables:
[tex]\[-\int \frac{1}{4y^3} dy = \int dx.\][/tex]
Integrating, we have:
[tex]\[\frac{1}{12y^2} = x + C,\][/tex]
where (C) is the constant of integration.
This equation represents the orthogonal trajectories of the family of curves [tex]\(y^4 = kx^3\)[/tex].
Let's check which of the given options satisfy the equation
[tex]\(\frac{1}{12y^2} = x + C\):[/tex]
(A) [tex]\(25y^3 + 3x^2 = C\)[/tex] does not satisfy the equation.
(B) [tex]\(2y^3 + 2x^2 = C\)[/tex] does not satisfy the equation.
(C) [tex]\(y^2 + 2x^2 = C\)[/tex] satisfies the equation with [tex]\(C = \frac{1}{12}\)[/tex].
(D) [tex]\(25y^2 + 25x^3 = C\)[/tex] does not satisfy the equation.
(E) [tex]\(23y^2 + 2x^2 = C\)[/tex] does not satisfy the equation.
(F) [tex]\(2y^3 + 25x^3 = C\)[/tex] satisfies the equation with [tex]\(C = -\frac{1}{12}\)[/tex].
(G)[tex]\(23y^2 + 23x^2 = C\)[/tex] satisfies the equation with [tex]\(C = -\frac{1}{12}\)[/tex].
(H) [tex]\(23y^3 + 25x^3 = C\)[/tex] does not satisfy the equation.
Therefore, the orthogonal trajectories are given by options (C), (F), and (G), i.e., [tex]\(y^2 + 2x^2 = C\)[/tex],
[tex]\(2y^3 + 25x^3 = C\)[/tex], and
[tex]\(23y^2 + 23x^2 = C\)[/tex].
To know more about differential equation click-
http://brainly.com/question/2972832
#SPJ11
Thanks for taking the time to read Find the orthogonal trajectories of the family of curves y4 kx3 A 25 y3 3x2 C B 2y3 2x2 C C y2 2x2 C D. We hope the insights shared have been valuable and enhanced your understanding of the topic. Don�t hesitate to browse our website for more informative and engaging content!
- Why do Businesses Exist Why does Starbucks Exist What Service does Starbucks Provide Really what is their product.
- The pattern of numbers below is an arithmetic sequence tex 14 24 34 44 54 ldots tex Which statement describes the recursive function used to..
- Morgan felt the need to streamline Edison Electric What changes did Morgan make.
Rewritten by : Barada