We appreciate your visit to When 0 5000 grams of an unknown hydrocarbon tex C xH y tex is completely combusted with excess oxygen 1 037 L of tex CO. This page offers clear insights and highlights the essential aspects of the topic. Our goal is to provide a helpful and engaging learning experience. Explore the content and find the answers you need!
Answer :
Answer: C₃H₈
Explanation:
From PV = nRT
Moles of CO2 = PV / RT =(1 x 1.037)/(0.08206 x ( 273+98.3)) = 0.0340 moles of CO2
CxHy + (x + (y/2))O₂ ----> xCO₂ + yH₂O
there is 1 mole of C in each mole of CO2 so moles of C in CO₂ = 0.0340 moles
mass of C in CO₂ = 0.0340 x 12 = 0.41 g
This means mass of C in the hydrocarbon = 0.41g
so mass of H in the hydrocarbon = 0.50 - 0.41= 0.09 g
moles of H in the hydrocarbon = mass/molar mass = 0.09/1 = 0.09 moles
molar ratio of C:H = 0.034 : 0.09 = 1 :2.67
or 3 :8
empirical formula is C3H8
Thanks for taking the time to read When 0 5000 grams of an unknown hydrocarbon tex C xH y tex is completely combusted with excess oxygen 1 037 L of tex CO. We hope the insights shared have been valuable and enhanced your understanding of the topic. Don�t hesitate to browse our website for more informative and engaging content!
- Why do Businesses Exist Why does Starbucks Exist What Service does Starbucks Provide Really what is their product.
- The pattern of numbers below is an arithmetic sequence tex 14 24 34 44 54 ldots tex Which statement describes the recursive function used to..
- Morgan felt the need to streamline Edison Electric What changes did Morgan make.
Rewritten by : Barada
Final answer:
To find the empirical formula of the hydrocarbon, calculate the moles of carbon dioxide produced using the ideal gas law and the moles of carbon and hydrogen in the hydrocarbon. The empirical formula is C12H1.
Explanation:
In order to determine the empirical formula of the hydrocarbon, we need to find the mole ratio of carbon to hydrogen in the compound. To do this, we first calculate the moles of carbon dioxide (CO2) produced using the ideal gas law:
n = (PV)/(RT) = (1.000 atm)(1.037 L)/(0.08206 L.atm/mol.K)(98.3 + 273.15 K) = 0.0443 mol
Since the combustion of 1 mole of hydrocarbon produces 1 mole of CO2, we can conclude that the moles of hydrocarbon consumed is also 0.0443 mol. Next, we calculate the moles of carbon and hydrogen in the hydrocarbon:
moles of carbon = (mass of carbon in hydrocarbon) / (molar mass of carbon) = (12.01 g/mol)(0.5000 g) / (1 g) = 6.003 mol
moles of hydrogen = (mass of hydrogen in hydrocarbon) / (molar mass of hydrogen) = (1.008 g/mol)(0.5000 g) / (1 g) = 0.5008 mol
The empirical formula of the hydrocarbon is then C6H0.5008. We can simplify this ratio by multiplying all the subscripts by 2 (the smallest whole number ratio) to get the empirical formula: C12H1.
Learn more about Empirical formula here:
https://brainly.com/question/32125056
#SPJ3