We appreciate your visit to A harmonic wave is traveling along a rope It is observed that the oscillator generating the wave completes 37 6 vibrations in 27 9 seconds. This page offers clear insights and highlights the essential aspects of the topic. Our goal is to provide a helpful and engaging learning experience. Explore the content and find the answers you need!
Answer :
Answer:
[tex]\lambda = 25.79\ cm[/tex]
Explanation:
given,
Wave vibrates = 37.6
time = 27.9 s
maximum distance travel = 450 cm
time = 11.3 s
wavelength = ?
frequency of wave
[tex]f=\dfrac{37.6}{27.9}[/tex]
f = 1.35 Hz
Speed of wave
[tex]v = \dfrac{450}{11.3}[/tex]
v = 39.82 cm/s
wavelength of wave
v = fλ
[tex]\lambda =\dfrac{v}{f}[/tex]
[tex]\lambda =\dfrac{34.82}{1.35}[/tex]
[tex]\lambda = 25.79\ cm[/tex]
Hence, wavelength of the wave is equal to 25.79 cm.
Thanks for taking the time to read A harmonic wave is traveling along a rope It is observed that the oscillator generating the wave completes 37 6 vibrations in 27 9 seconds. We hope the insights shared have been valuable and enhanced your understanding of the topic. Don�t hesitate to browse our website for more informative and engaging content!
- Why do Businesses Exist Why does Starbucks Exist What Service does Starbucks Provide Really what is their product.
- The pattern of numbers below is an arithmetic sequence tex 14 24 34 44 54 ldots tex Which statement describes the recursive function used to..
- Morgan felt the need to streamline Edison Electric What changes did Morgan make.
Rewritten by : Barada
Final answer:
The wavelength of a wave can be calculated using the speed of the wave and its frequency. In this case, the wavelength is 29.50 cm.
Explanation:
Wavelength: The wavelength of a wave is the distance between two similar points on the medium that have the same height and slope. In this case, the wavelength can be found using the formula: λ = v/f, where v is the speed of the wave and f is the frequency.
Given Data: Number of vibrations = 37.6, Time = 27.9 s, Distance traveled = 450 cm, Time = 11.3 s.
Calculation: Speed of the wave = Distance/Time = 450 cm / 11.3 s = 39.82 cm/s. Frequency = Number of vibrations / Time = 37.6 / 27.9 = 1.35 Hz. Therefore, Wavelength = 39.82 cm / 1.35 Hz = 29.50 cm.