We appreciate your visit to Three physically identical synchronous generators are operating in parallel They are all rated at 100 MW at 0 85 PF power factor lagging The no. This page offers clear insights and highlights the essential aspects of the topic. Our goal is to provide a helpful and engaging learning experience. Explore the content and find the answers you need!
Answer :
(a) The system frequency and power sharing among the three generators can be determined by solving the equations based on their characteristics and the total load.
(b) To bring the system frequency to 60 Hz while keeping the load of each generator unchanged, adjust the no-load frequency of each generator based on the modified power output equations.
(a) To determine the system frequency and power sharing among the three generators, we need to consider the load requirements and the characteristics of each generator.
Generator A:
No-load frequency: 61 Hz
Slope: 56.27 MW/Hz
Generator B:
No-load frequency: 61.5 Hz
Slope: 49.46 MW/Hz
Generator C:
No-load frequency: 60.5 Hz
Slope: 65.23 MW/Hz
Total load: 230 MW
First, let's calculate the power output of each generator based on their respective slopes and the system frequency.
For Generator A:
Power output = Slope * (System frequency - No-load frequency)
Power output = 56.27 MW/Hz * (f - 61 Hz)
For Generator B:
Power output = 49.46 MW/Hz * (f - 61.5 Hz)
For Generator C:
Power output = 65.23 MW/Hz * (f - 60.5 Hz)
Since the total load is 230 MW, the sum of the power outputs of the three generators should equal the load.
Power output of Generator A + Power output of Generator B + Power output of Generator C = Total load
56.27 MW/Hz * (f - 61 Hz) + 49.46 MW/Hz * (f - 61.5 Hz) + 65.23 MW/Hz * (f - 60.5 Hz) = 230 MW
Solve this equation to find the system frequency (f) and the power sharing among the three generators.
(b) To adjust the no-load frequency of each generator to bring the system frequency to 60 Hz while keeping the total system load at 230 MW and the load of each generator unchanged, we need to modify the power output equations.
For Generator A:
Power output = Slope * (System frequency - No-load frequency)
Power output = 56.27 MW/Hz * (60 Hz - 61 Hz)
For Generator B:
Power output = 49.46 MW/Hz * (60 Hz - 61.5 Hz)
For Generator C:
Power output = 65.23 MW/Hz * (60 Hz - 60.5 Hz)
Solve these equations to find the new power outputs of each generator. Adjust the no-load frequency of each generator accordingly to bring the system frequency to 60 Hz while maintaining the load requirements.
In conclusion:
(a) The system frequency and power sharing among the three generators can be determined by solving the equations based on their characteristics and the total load.
(b) To bring the system frequency to 60 Hz while keeping the load of each generator unchanged, adjust the no-load frequency of each generator based on the modified power output equations.
To know more about Frequency, visit
brainly.com/question/31417165
#SPJ11
Thanks for taking the time to read Three physically identical synchronous generators are operating in parallel They are all rated at 100 MW at 0 85 PF power factor lagging The no. We hope the insights shared have been valuable and enhanced your understanding of the topic. Don�t hesitate to browse our website for more informative and engaging content!
- Why do Businesses Exist Why does Starbucks Exist What Service does Starbucks Provide Really what is their product.
- The pattern of numbers below is an arithmetic sequence tex 14 24 34 44 54 ldots tex Which statement describes the recursive function used to..
- Morgan felt the need to streamline Edison Electric What changes did Morgan make.
Rewritten by : Barada