We appreciate your visit to Part A An RLC circuit with R 23 4 2 L 352 mH and C 42 3 uF is connected to an ac generator with. This page offers clear insights and highlights the essential aspects of the topic. Our goal is to provide a helpful and engaging learning experience. Explore the content and find the answers you need!
Answer :
Part A: The average power delivered to the circuit when the frequency of the generator is equal to the resonance frequency is 24.7 W.
Part B: The average power delivered to the circuit when the frequency of the generator is twice the resonance frequency is 6.03 W.
Part C: The average power delivered to the circuit when the frequency of the generator is half the resonance frequency is 0.38 W.
Part A:
The average power delivered to an RLC circuit is given by the following formula:
P = I^2 R
The current in an RLC circuit can be calculated using the following formula:
I = V / Z
The impedance of an RLC circuit can be calculated using the following formula:
Z = R^2 + (2πf L)^2
The resonance frequency of an RLC circuit is given by the following formula:
f_r = 1 / (2π√LC)
Plugging in the values for R, L, and C, we get:
f_r = 1 / (2π√(352 mH)(42.3 uF)) = 3.64 kHz
When the frequency of the generator is equal to the resonance frequency, the impedance of the circuit is equal to the resistance. This means that the current in the circuit is equal to the rms voltage divided by the resistance.
Plugging in the values, we get:
I = V / R = 24.0 V / 23.4 Ω = 1.03 A
The average power delivered to the circuit is then:
P = I^2 R = (1.03 A)^2 (23.4 Ω) = 24.7 W
Part B
When the frequency of the generator is twice the resonance frequency, the impedance of the circuit is equal to 2R. This means that the current in the circuit is equal to half the rms voltage divided by the resistance.
I = V / 2R = 24.0 V / (2)(23.4 Ω) = 0.515 A
The average power delivered to the circuit is then:
P = I^2 R = (0.515 A)^2 (23.4 Ω) = 6.03 W
Part C
When the frequency of the generator is half the resonance frequency, the impedance of the circuit is equal to 4R. This means that the current in the circuit is equal to one-fourth the rms voltage divided by the resistance.
I = V / 4R = 24.0 V / (4)(23.4 Ω) = 0.129 A
The average power delivered to the circuit is then:
P = I^2 R = (0.129 A)^2 (23.4 Ω) = 0.38 W
To learn more about resonance frequency: https://brainly.com/question/28168823
#SPJ11
Thanks for taking the time to read Part A An RLC circuit with R 23 4 2 L 352 mH and C 42 3 uF is connected to an ac generator with. We hope the insights shared have been valuable and enhanced your understanding of the topic. Don�t hesitate to browse our website for more informative and engaging content!
- Why do Businesses Exist Why does Starbucks Exist What Service does Starbucks Provide Really what is their product.
- The pattern of numbers below is an arithmetic sequence tex 14 24 34 44 54 ldots tex Which statement describes the recursive function used to..
- Morgan felt the need to streamline Edison Electric What changes did Morgan make.
Rewritten by : Barada